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Abstract. The quantification, mapping and monitoring of biomass are now central issues due to
the importance of biomass as a renewable energy source in many countries of the world. The
estimation of biomass is a challenging task, especially in areas with complex stands and varying
environmental conditions, and requires accurate and consistent measurement methods. To effi-
ciently and effectively use biomass as a renewable energy source, it is important to have detailed
knowledge of its distribution, abundance, and quality. Remote sensing offers the technology to
enable rapid assessment of biomass over large areas relatively quickly and at a low cost. This
paper provides a comprehensive review of biomass assessment techniques using remote sensing
in different environments and using different sensing techniques. It covers forests, savannah, and
grasslands/rangelands, and for each of these environments, reviews key work that has been
undertaken and compares the techniques that have been the most successful. © The Authors.
Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or repro-
duction of this work in whole or in part requires full attribution of the original publication, including its
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1 Introduction

Lignocellulosic biomass or plant dry matter (biomass) is a highly abundant renewable energy
resource that can be used to generate a continuous supply of heat and electricity as well as solid,
liquid, and gaseous fuels.1 Therefore, plant biomass plays an important role in the global quest
for sustainable energy solutions since it is a renewable energy source that is easily available to
humans. Although it is considered that all fossil fuels such as coal and oil originated from buried
living material, they are usually excluded from the definition of biomass. Biomass has stored
energy through the process of photosynthesis. It exists in one form as plants and may be trans-
ferred through the food chain to animal bodies and their wastes, all of which can be converted to
energy through processes such as combustion. Biomass has been converted by partial pyrolysis
to charcoal for thousands of years. Charcoal, in turn, has been used for forging metals and for
light industry for hundreds of years. Both wood and charcoal formed part of the backbone of the
early industrial revolution prior to the discovery of coal for energy. Wood is still used extensively
for energy in both household situations and in industry, particularly in the timber, paper, pulp,
and other forestry-related industries. The easiest and most efficient way to use biomass as energy
is through burning. When it is burned, a part of the internal chemical energy converts to heat.
Biomass can also be burned in special plants called waste-to-energy plants which use the heat
energy to create steam, which is then used to either heat buildings or create electricity.

The main benefit of biomass is that it is a renewable fuel. Not only does this give us a renew-
able source of energy to heat our homes, power our vehicles, and produce electricity, but it also
helps us to utilize discarded waste that is filling up large dump sites. Many Asian countries are
looking to biomass power plants to increase domestic energy outputs and reduce reliance on
foreign energy supplies. Asia is expected to construct about 1000 MWof biomass energy capac-
ity annually by 2020—twice as much as is expected in Europe.2 Thailand, Indonesia, Malaysia,
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and the Philippines all have introduced feed-in tariffs to encourage biomass energy production.3

Also, due to Asian climates, many countries can produce sufficient amounts of biomass.
Many countries of the world are now expanding resources toward quantifying, mapping and

monitoring biomass due to its importance as a renewable energy source. However, biomass
resources are distributed over wide geographical areas and their biochemical properties are
highly variable over space. Furthermore, its suitability as a renewable resource is also site-spe-
cific. This makes biomass estimation a challenging task, especially in areas with complex forest
stand structures and environmental conditions,3 and requires accurate and consistent measure-
ment methods.4 Traditionally, two methods are available for the determination of biomass.5 The
first method is destructive sampling, which involves the complete harvesting of plots and sub-
sequent extrapolation to a unit area of hectare.6 The second method is based on allometry where
allometric equations are used to extrapolate both in situ and remotely sampled data to a larger
area to derive biomass and canopy volume from an easily measured attribute such as diameter at
breast height (DBH), tree height, etc. Allometric relationships are used for estimating tree allom-
etry which establishes quantitative relations between some key tree characteristic such as dimen-
sions of trees (easy to measure) and other properties (which are difficult to assess). Both these
traditional methods are accurate but are extremely time-consuming, costly, and generally limited
to small areas and small tree sample sizes.7–9 Moreover, extending this method to map forest
biomass across a large area is extremely challenging when factors such as ecological differences,
variations in inventory systems, and scattered sources of biomass data are considered. In addi-
tion, since the allometric coefficients are site and species specific and are based on a certain range
of tree diameters, the use of standard allometric equations can lead to significant errors in veg-
etation biomass estimations if used outside the area where they were originally produced.10

There have been efforts in developing generalized regional and national tree biomass equations
that could be applied to a larger geographic footprint than most existing allometric equations.11,12

Another vegetation type of great interest is the tropical savanna, not only for the large regions
it covers but also for the high interannual biomass dynamics. Grasslands and rangelands also
have considerable biomass and thus energy generation capacities, especially since they cover
around 40% of the earth’s land surface. Remote sensing can be used to ascertain the potential
availability of biomass over large regions and also to estimate biomass energy potential for dif-
ferent land-cover classes.13 However, the actual recovery of this biomass will depend on the
availability of technology to collect and utilize this material in an economical fashion.14

Remote sensing techniques can be used in combination with geographical information systems
(GIS) to evaluate the feasibility of such initiatives. These techniques can be used to evaluate the
feasibility of and optimization of the locations of new biomass power plants13 to evaluate the cost
effectiveness of energy production from biomass1 and to devise a framework for estimating
residual biomass using satellite imagery and forest inventory data.15

Additionally, remote sensing is the best approach to estimate biomass at a regional level where
field data are scarce or difficult to collect. Almost two decades have passed since pioneers such as
Refs. 16 and 17 related biomass to reflectance recorded at the sensor. Since then, many studies in
different regions have found strong correlations between biomass and reflectance at different wave-
lengths. In this paper, we review various techniques and platforms for biomass estimation. We look
at forests, savanna, and grasslands/rangelands separately as each has its own characteristics and
problems when it comes to biomass estimation. There have been several review papers on biomass
estimation in the past few years; however, most of them have described remote sensing based
estimation for forest biomass.3,18–20 This current review incorporates remote sensing-based biomass
estimation for three major vegetation ecosystems: forest, grassland and rangelands, and tropical sav-
anna, that cover ∼80% of earth’s vegetative cover.21,22 These vegetative surfaces on earth are more
“natural” ecosystems without much human disturbance, unlike agricultural lands which are heavily
dependent on cropping management, and thus provide an opportunity to the reader to assess the
challenges and differences in remote sensing-based biomass estimations for these natural ecosystems.

2 Remote Sensing

One of the recent advances in biomass estimation approaches is the incorporation of inferences
derived from remote sensing. Remotely sensed data have the provision of a synoptic view of the
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surface area of interest, thereby capturing the spatial variability in attributes of interest like tree
height, crown closure, etc. The spatial coverage of large area biomass estimates that are con-
strained by the limited spatial extent of forest inventories may be expanded through the use of
remotely sensed data. Biomass and carbon stock estimates derived from forest inventory data
usually have some spatial, attributional, and temporal gaps. Remotely sensed data can be used to
fill these gaps, thereby leading to estimates closer to the actual value. Remote sensing data are
available at different scales, from local to global, from various sources including optical or
microwave, and hence are expected to provide information which can be related directly,
and in different ways, to biomass information.23,24 Although remote sensing technology cannot
effectively be used for underground biomass, it has the ability to provide important information
for aboveground biomass (AGB).3,25 A large range of studies has been conducted for biomass
estimation from remote sensing data.24,26–31 The advantages of remote sensing include the ability
to obtain measurements from every location in the forest, the speed with which remotely sensed
data can be collected and processed, the relatively low cost of many remote sensing data types,
and the ability to collect data easily in areas which are difficult to access on the ground.32 There
are many sensors available with different characteristics of spectral, spatial, and temporal res-
olutions used for biomass estimation based on availability, efficiency and cost. Optical remote
sensing, radar and light detection and ranging (LiDAR) sensors provide the three main sources of
remotely sensed data for biomass estimation.

2.1 Optical Remote Sensing

Due to its coverage, repetitiveness and cost-effectiveness, optical remote sensing provides a
potential alternative to tedious hand sampling as a means of estimating biomass over large
areas.33,34 Optical remote sensing data can be acquired at a variety of spatial and temporal
resolutions. High-spatial resolution data from sensors such as Quickbird, WorldView,
GeoEye, IKONOS, and DigitalGlobe as well as aerial photographs come in spatial resolutions
ranging from submeters to <5 m in both multispectral and panchromatic images. Images at
high resolution offer a fundamental shift in vegetation assessment capability where a multi-
spectral pixel can image a single tree crown, unlike sensors with medium resolution such as
Landsat or Systeme Probatoire D’Observation De La Terre (SPOT) where a single pixel can
encompass many tree crowns or significant noncrown features.35,36 Satellite data covering 10
to 100 m of ground in 1 pixel are termed as medium-spatial resolution data and Landsat time
series and SPOT sensors have been the two primary sources of medium-resolution data.
Coarse-resolution data (>100 m) [e.g., MODIS, national oceanic and atmospheric adminis-
tration (NOAA), advanced very high resolution radiometry (AVHRR), SPOT vegetation] can
be useful for biomass estimation at regional to continental scales since their high temporal
frequency increases the probability of acquiring cloud-free data for generating consistent data-
sets over large areas. AVHRR data have been the most widely used datasets for studies of
vegetation dynamics on a continental scale. However, the MODIS sensor has improved spec-
tral and spatial resolutions compared to the widely used AVHRR and provides a suite of bio-
physical products that are useful in biomass estimation, including vegetation indices, leaf area
index (LAI), fraction of absorbed photosynthetically active radiation (FAPAR), gross primary
production, net photosynthesis, and net primary productivity (NPP).37,38 The mid-infrared
(MIR) reflectance from optical remote sensing data is closely related to biomass and thus
was found to be more useful in assessing alterations in vegetation characteristics compared
to reflectance in visible (VIS) and near-infrared (NIR) bands.39 Hyperspectral remote sensing
is an another important source of optical satellite data for biomass estimation. Unlike multi-
spectral satellite sensors, hyperspectral remote sensing allows the acquisition of many, very
narrow, contiguous spectral bands throughout the VIS, NIR, MIR, and thermal infrared por-
tions of the electromagnetic spectrum.40 This ability to collect reflectance in many narrow
bands makes hyperspectral remote sensing particularly useful for extracting vegetation param-
eters, such as LAI, chlorophyll content, and leaf nutrient concentration.41 Optical sensors
collect data from only the aboveground vegetation and have been used mainly for aboveground
biomass assessment.
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A range of techniques are used with optical remote sensing data to estimate biomass.42

A commonly used technique involves the use of vegetation indices such as ratio vegetation
index (RVI), normalized difference vegetation index (NDVI) and soil adjusted vegetation
index (SAVI).43 Alternatively, remote sensing data can be used to obtain indirect estimates
of absorbed photosynthetically active radiation (APAR) from the red and infrared reflectance
characteristics of the vegetation.44 The APAR gives an indication of how efficiently absorbed
energy is converted into dry biomass by a vegetation type.45 Another technique involves
the use of process-based models which estimate biomass production from remote sensing
data by combining canopy functioning process-based models with physical radiative transfer
models.46,47

2.2 Radar

Over recent years, there has been increasing interest in synthetic aperture radar (SAR) data for
aboveground biomass analyses, particularly in the areas of frequent cloud conditions where
obtaining high quality optical data is difficult. The capability of radar systems to collect
data in all weather and light conditions overcomes this issue. Furthermore, the SAR sensor
can penetrate vegetation to different degrees and provides information on the amount and
three-dimensional (3-D) distribution of structures within the vegetation.48 Airborne SAR has
been operating for many years, but since the 2000s, space-borne SAR sensors such as
TerraSAR-X, Advanced Land Observing Satellite (ALOS) and Phased Array L-band SAR
(PALSAR) have become available.49 Many studies based on SAR have focused on the develop-
ment of algorithms for classification and biomass estimation in closed-canopy forests.48,50

A commonly used approach to biomass retrieval from SAR has been to establish empirical
relationships between field-based estimates and single channel data.48

The SAR sensor can detect the horizontal (H) or the vertical (V) components of the back-
scattered radiation. Hence, there are four possible polarization configurations for an SAR sys-
tem: horizontal transmit and horizontal receive (HH), vertical transmit and vertical receive (VV),
horizontal transmit and vertical receive (HV), and vertical transmit and horizontal receive,
depending on the polarization states of the transmitted and received radar signals. The SAR
on the ERS satellite is VV polarized while the RADARSAT satellite is HH polarized. Radar
backscatters (P and L bands) have been found to be positively correlated with major forest
parameters, such as tree age, tree height, DBH, basal area, and total aboveground dry bio-
mass.28,51–54 A detailed review on the use of radar data for biomass estimation can be found
in the literature.55,56 Various studies have utilized radar data in biomass analyses of a range
of biomes.53,54,57,58

There are a number of advantages to radar remote sensing compared to optical remote
sensing in terms of its utility in biomass estimation in savannas. The ability of radar to penetrate
cloud and haze makes it especially useful in the tropics. Furthermore, radar based sensors are
active and have a controlled power outlet, which ensures consistent transmit and return rates.
Thus, radar sensors can function independently of solar radiation variations, unlike optical
sensors where spectral reflectance measurements are affected by variations in solar radiation.59

On the other hand, radar use has limited applications in regional studies due to the small swath
width, high costs of airborne acquisitions, lower sampling density of the large footprint wave-
form, and the limited extent of coverage.48

2.3 LiDAR

The two-dimensional (2-D) nature of optical remote sensing data limits its use in direct quanti-
fication of some vegetation characteristics like tree height, canopy height, volume, etc. LiDAR is
a relatively new and sophisticated technology that helps to overcome this limitation due to its
ability to extend the spatial analysis to a third dimension. LiDAR instruments have the ability to
sample the vertical distribution of canopy and ground surfaces,60,61 and several studies have
established a strong correlation between LiDAR metrics and aboveground biomass, thus
allowing estimation of biomass in forested environments.62–64 LiDAR technology has seen con-
siderable advancement with the advent of full waveform digitizing sensors,65 which has allowed
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this tool to be increasingly used in the study of forest structures in a variety of forest environ-
ments.66–68 It has become the most efficient technology for structural assessment since it captures
landscape structural data that are suitable for volume and biomass estimation.69 Biomass can be
estimated at the individual tree level with allometric equations using LiDAR data of sufficient
post spacing (e.g., >1 return∕m2).48 A detailed review of LiDAR data application in forestry can
be found in Lim et al.70

The 3-D LiDAR points represent latitude, longitude, and ellipsoidal height based on the
WGS84 reference ellipsoid. Ellipsoidal heights are converted to elevations. There are currently
two types of LiDAR in operation: (1) discrete return LiDAR (small footprint) and (2) full wave-
form LiDAR (large footprint).71 Both are generally calibrated to operate in the 900- to 1064-nm
wavelengths where vegetation reflectance is highest.68 A combination of either small or large
footprint LiDAR systems along with GPS and accurate time referencing allow the extraction of
position in 3-D of the reflecting surface.68 Discrete return airborne LiDAR systems are more
suitable for fine-scale biomass mapping, while waveform space-borne LiDAR, e.g., The
Geoscience Laser Altimeter System (GLAS) on board Ice, Cloud, and Land Elevation
Satellite (ICESat) has the potential for broad-scale biomass mapping.72,73

Although LiDAR data have some advantages over optical data, there are a few issues
that restrict its use for field applications. For example, LiDAR data analyses are not simple
and require more image processing knowledge and skill and specific software. The LiDAR
data acquisition process is expensive and covers smaller areas, hence study areas are still
limited to specific areas and have not been applied extensively to larger areas for biomass
estimation.

3 Biomass Estimation in Forests

The remote sensing methods, data types, and some examples for forest biomass estimation are
shown in Table 1.

3.1 Use of Optical Remote Sensing

Optical remote sensing data, with a variety of spatial and temporal resolutions, have been
widely used for forest biomass estimation using different types of image processing tech-
niques.4,7,24,29,30,84,87,117–121 For biomass estimation from optical data, the commonly used
approaches are multiple regression analysis, k-nearest neighbor, and neural network.24,29,30,122,123

Optical data can be used to carry out spatial stratification of vegetation from which estimates of
biomass distribution can be generated. For indirect biomass estimation, remote sensing data are
used to determine tree canopy parameters, such as crown diameter using multiple regression
analysis or canopy reflectance models.124,125 Different types of vegetation indices and band ratios
derived from optical data are also used to extract biomass by correlating vegetation index values
or band ratio values with field estimations.87

The ready availability of high-resolution data from a range of sensors has permitted the
modeling of tree parameters or forest canopy structures. For example, Song et al.36 estimated
tree crown size from IKONOS and Quickbird images and concluded that this approach could
provide estimates of average tree crown size for hardwood stands. Greenberg et al.77 have
effectively used IKONOS data (spatial resolution 4 m) in estimating crown projected area,
DBH and stem density. There are numerous methods applied for the extraction of biophysical
parameters using high-spatial resolution data.126 Large scale photographs and photomensura-
tion methods have been used to measure various forest characteristics, such as tree height,
crown diameter, crown closure, and stand area.75,127 De Jong et al.76 used digital airborne
data to estimate biomass in southern France using linear regression analysis. In another
study, Thenkabail et al.4 used IKONOS data to estimate biomass of oil palm plantations in
Africa. Although high-spatial resolution and associated multispectral characteristics may
become an important data source for forest biomass estimation and have attained great success,
the shadows and intracrown spectral variance and the low spectral separability between tree
crowns and other vegetated surfaces in the understory128–130 create difficulty in developing
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biomass estimation models. High-resolution data need large data storage and processing time
and are much more expensive to cover a given area. These factors influence the application of
high-spatial resolution images for biomass estimation over broad areas. The absence of
shortwave-infrared images, an important parameter for biomass estimation, also limits its
application in biomass assessment. The problem is greater when traditional pixel-based
spectral classifiers are used for vegetation classification. However, the incorporation of con-
textual information and object-based methods into the classification process has overcome
this problem to an extent.109,111 Object-based methods consider both spectral and context
information during the classification process by segmenting the image into meaningful
objects.110,112 The size of the image objects is determined by a scale parameter.131 The selec-
tions of segmentation parameters are subjective and determined through a combination of trial
and error steps. Statistics on spectral bands (mean, standard deviation, etc.) along with other
contextual information, such as geometric features (area, length, compactness, shape, etc.),
and texture features-gray-level co-occurrence matrix (GLCM) (homogeneity, contrast,
entropy, dissimilarity, correlation, etc.), and gray-level difference vector (entropy, contrast,
etc.) of spectral bands are used to statistically derive features for each object that best separate
the vegetation classes. Numerous studies have extracted GLCM textures from remote sensing

Table 1 Summary of the remote sensing methods, data types, and some examples for forest
biomass estimation.

Category Methods Data used Characteristics Examples

Remote
sensing-
based
methods

Methods based on fine spatial
resolution data (<5 m) (parametric
classifiers, MLC, MDM, etc.;
nonparametric classifier,
ISODAT, k-means)

Aerial photographs,
IKONOS, Quick Bird,
GeoEye, WorldView

Per-pixel level Refs. 4, 36,
and 74–77

Methods based on medium-spatial
resolution data (10–100 m)
(linear, exponential and multiple
regression analysis, neural
network, k-nearest neighbor
method, productivity model)

Landsat 4 5 7
TM∕EnhancedTMþ ,
Systeme Probatoire
D’Observation De La
Terre (SPOT)

Per-pixel level Refs. 78–83

Methods based on coarse-spatial
resolution data (> 100 m)
(regression models, multiple
regression and artificial neural
network (ANN), k-nearest
neighbor, statistical models)

IRS-1C WiFS, AVHRR,
MODIS, SPOT vegetation

Per-pixel level Refs. 81 and
84–89

Methods based on radar
data (regression models,
canopy height model,
multiplicative models)

SIR-C, SAR-L JERS-1
SAR-L, AeS-1 SAR-P,
InSAR, airborne laser,
large and small
footprint LiDAR

Per-pixel level Refs. 54, 57,
72, and 90–100

Method based on image fusion
techniques (intensity hue and
saturation (HIS), Brovey, PCA

Multispectral and PAN Refs. 101–104

Vegetation index-based
method (NDVI, ratio)

Refs. 105–108

Object based (segmentation and
classification, ANNs, k-nearest
neighbor, statistical models;
random forest)

Object-level Refs. 109–113

Advanced classifier spectral
mixture analysis (SVM),
random forest, support
vector machine (SVM)

Multispectral Per-pixel level Refs. 113–116
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images.111,113,132 In Rondônia State, Brazil, Lu and Batistella113 used the GLCM texture (mean,
variance, homogeneity, contrast, dissimilarity, entropy, second moment, and correlation) with
different moving window sizes and Landsat thematic mapper (TM) spectral bands 2 to 5 and 7
to examine the relationships between biomass and textural images for secondary and mature
forest. They found a stronger relationship between textural images and biomass for mature
forest with complex stand structure than original spectral bands. However, for secondary forest
with a simple stand structure, biomass was closely related to spectral bands.

Medium-spatial resolution data have also been widely used in forest biomass estimation. For
example, Lefsky et al.80 estimated stand tree structure attributes such as basal area, biomass and
DBH using remote sensing data. Linear or nonlinear regression models, k-nearest neighbor, neu-
ral network, and vegetation canopy models are the main methods applied in this case. In a
Bornean tropical rain forest, Foody et al.82 used neural networks for biomass estimation
using Landsat TM. Ghasemi et al.133 used SPOT 5 data to estimate aboveground forest biomass
from canopy reflectance model inversion in the mountainous terrain of Kananaskis, Alberta.
Landsat TM data were used to estimate tree volume and biomass using the k-nearest neighbor
estimation method.78,79,81 The task of estimating biomass from optical data for humid tropical
forests is challenging because of its complex multilayered closed canopy structure combined
with high levels of biomass.3,24,29,82,118,123,134 In such cases, spectral reflectance and vegetation
indices were found not to be reliable indicators of biomass24 and were not sensitive to biomass
change.29 However, with the inclusion of some other factors, a few studies have shown positive
results in estimating tropical forest biomass. For example, Nelson et al.123 included the age of the
forest into Landsat TM image analysis to estimate tropical forest biomass, while with the use of
texture information into the image analysis process, Lu118 and Sarker and Nichol135 improved
biomass estimation results in tropical forests. Lu118 concluded image texture features to be more
important than spectral reflectance for biomass estimation for forests with more complex stand
structure. However, it is critical to identify suitable image textures that are strongly correlated
with biomass but are weakly correlated with each other and this requires a great deal of effort.136

In addition, image textures vary with the landscape and images used, therefore, not all texture
measures can effectively extract biomass information and guidelines on how to select an appro-
priate texture needs more research. Several vegetation indices have been developed, mostly from
VIS and infrared bands and applied to biomass estimation and biophysical parameter stud-
ies.105,106 Vegetation indices have been found useful in minimizing spectral variability caused
by canopy geometry, soil background, sun view angles, and atmospheric conditions when meas-
uring biophysical properties.107,108 Although not all vegetation indices were found to be directly
correlated with biomass,24 by minimizing the impact of environmental conditions and shadow on
spectral reflectance, there was improved correlation between biomass and vegetation indices,
especially in complex vegetation stand structures.105 Therefore, a combination of image textures
and spectral responses can be considered useful in determining forest stand parameters and to
establish more accurate biomass estimation models.118 In addition to pixel-based spectral
responses and textural images, subpixel-based variables such as green vegetation, shade, and
soil can also be used as input variables for biomass estimation.20,137 Spectral mixture analysis
(SMA) has been found useful in developing these fractional images from multispectral images
such as Landsat TM.113,115 Lu and Batistella113 used SMA to extract fractional images from a
Landsat TM image to examine the relationship between biomass and the subpixel variables for
secondary and mature forests in Rondônia State. They found fractional images to be more useful
for biomass estimation as compared to individual spectral bands. A detailed description of the
SMA approach and its applications can be found in the literature.114–116

Coarse-spatial resolution AVHRR NDVI data have been used to estimate biomass in Africa86

and boreal and temperate forest woody biomass in Canada, Finland, Norway, Russia, Sweden,
and the USA.87 The advantages of a large number of spectral bands of MODIS data and their
availability have improved biomass estimation accuracy at the continental or global scale. Recent
studies have achieved promising results using tree-based models and metrics derived from
MODIS data, in combination with radar data and ancillary information (climate, topography,
and vegetation maps), to map the biomass distribution for the Amazon basin,89 the United
States,138 and tropical Africa.85 Baccini et al.84 used MODIS data in combination with precipi-
tation, temperature, and elevation for mapping biomass in national forest lands in California,
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USA. Overall, the application of forest biomass estimation using coarse-spatial resolution data
is limited due to the occurrence of mixed pixels, saturation of spectral data at high biomass
density and by the mismatch between the size of field plots and pixel size. A few studies have
used coarse-resolution data along with medium-resolution data in combination with different
modeling approaches to get more accurate biomass estimates for large areas. For example,
Hame et al.88 used Landsat TM and AVHRR data to estimate coniferous forest biomass.
In another study, Tomppo et al.81 used TM as an intermediate step between field data and
IRS-1C wide field sensors data to estimate tree stem volume and biomass in Finland and
Sweden.

Overall, optical sensor data are found suitable for extracting horizontal vegetation structures
such as vegetation types and canopy cover; however, the 2-D data have limitations in estimating
vertical vegetation structures such as canopy height, which is one of the critical parameters for
biomass estimation. Recently, optical data such as ALOS, panchromatic remote-sensing instru-
ment for stereo mapping (PRISM), IKONOS stereo satellite images, and SPOT provide a stereo
viewing capability that can be used to develop vegetation canopy height, thus can improve bio-
mass estimation performance.139,140 For example, St‐Onge et al.139 assessed the accuracy of the
forest height and biomass estimates derived from an IKONOS stereo pair and an LiDAR digital
terrain model. Reinartz et al.141 used SPOT 5 HRS for forest height estimations in Bavaria and
Spain, while Wallerman et al.142 investigated 3-D information derived from SPOT 5 stereo
imagery to map forest variables such as tree height, stem diameter and volume. These studies
show that high-resolution stereo data can be used as a valuable alternative to derive vegetation
height information; however, more studies are needed to support this.

3.2 Use of Radar

Studies that utilized radar data in forest biomass estimations found SAR L-band data to be more
useful53 than SAR C-band data.90 Beaudoin et al.143 found that VV and HV radar backscatter at
high frequencies (C-bands and X-bands) were linked to crown biomass while radar backscatter
HH at lower frequencies (P-bands and L-bands) were related to both trunk and crown biomass.
Harrell et al.144 used SIR C- and L-band multipolarization radar data for pine forest biomass
estimation in the southeastern USA and found L-band HH data to be critical in biomass esti-
mation. They noted that the inclusion of C-band HV or HH significantly improved biomass
estimation performance. For biomass estimation of regenerating forests, Kuplich et al.91

found JERS-1/SAR data to be useful when forests are regenerating after block logging and
not after selective logging. For mountainous area forest biomass estimation, multipolarization
L-band SAR data were found to be useful.53 Santos et al.92 found that JERS-1/SAR double
bounce scattering and forest structural-physiognomic characteristics are the two important fac-
tors for biomass estimation of forest and savanna. For biomass estimation, most of the previous
studies used the radar system from JERS-1, ERS-1/2 of single polarization, single incident angle,
and low resolution SAR sensor. However, with the establishment of PALSAR and RADARSAT-
2 (C-band), data are now available in different polarizations, different resolutions, and varying
incident angles, which offer more opportunities to the scientific community to re-examine the
potential of SAR data in forest biomass estimation. PALSAR data results have shown its ability
to map forest in the Amazon and Siberia; however, the retrieval of forest biomass is still typically
limited to values less than 50 t ha−1, which excludes most temperate and tropical forests.145

Sarker et al.57 investigated the capability of RADARSAT-2 fine-beam dual-polarization (C-
HV and C-HH) data for forest biomass estimation in complex subtropical forest and found
encouraging results. Radar data saturation problem is greater in complex forest stand structure
when backscattering values are used for biomass estimation.146,147 Interferometry SAR (InSAR)
has been found useful in reducing this problem by increasing the saturation range to a certain
degree by coherently collecting data over a short time increment with two identical instru-
ments.93,94,133 This improves the height-based biomass and volume estimation when the L-
band saturation point increases to 200 t ha−1.73 Balzter93 reviewed InSAR for forest mapping
and monitoring covering tree volume and biomass, forest types and land cover, fire scars, forest
thermal state, and forest canopy height. The high correlation between vegetation canopy height
and biomass of InSAR makes it a promising tool for broad-scale biomass estimation, especially
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for tropical and subtropical regions where frequent cloud cover is a problem.94,95 However,
other weather conditions, such as wind speed, moisture, and temperature, affect the InSAR
estimation accuracy.148 Recently, the polarimetric SAR interferometry (Pol-InSAR), a combined
polarization and interferometry, has been found useful in estimating forest height using coher-
ence information149 and then correlating it to biomass.150

3.3 Use of LiDAR

The structural forest measurements from LiDAR data permit the accurate estimation of height,
crown size, basal area, stem volume, LAI, NPP, and aboveground biomass, even in high biomass
forests, a difficult task with passive sensors.66 Biomass mapping from airborne discrete return
LiDAR is based on two approaches: (1) area-based and (2) individual tree-based methods.72

Area-based methods develop statistical models to relate biomass with metrics derived from
a LiDAR point cloud at the plot or stand level and apply the models over the whole study
area.151–97 The development of statistical models requires field data for calibration and valida-
tion. The most widely used area-based LiDAR metrics for biomass prediction are various height
metrics70,152,153 calculated based on first, last, or all returns. Height metrics can also be calculated
from grids of the canopy height model.96,139,152 Individual tree-based methods identify individual
tree crowns and extract individual tree information from LiDAR point cloud, such as tree height
and crown size, which can be related to biomass and other canopy structure variables through
allometric equations. 154–156 In this case, the amount of fieldwork required is much smaller than
that for area-based methods because field data are needed only for a sample tree and not for
sample plots or stands. Discrete return systems have been used to estimate biomass at the indi-
vidual tree level up to the stand level.154,155,157,158 The DEMs generated from airborne LiDAR
data are very accurate and widely used in forest mapping and tree parameter estimations. It
captures elevation information from the forest canopy as well as the ground beneath and
can be used to assess the complex 3-D patterns of canopy and forest stand structure such as
tree density, stand height, basal area, LAI, and forest biomass and volume.68,159 In densely veg-
etated areas when passive sensors saturate at high biomass levels (higher than 100 mg ha−1),160

LiDAR has been found to accurately estimate LAI and biomass in such high biomass ecosys-
tems.68 In British Colombia, Canada, Loos et al.161 identified understory canopies between the
dominant canopies of Douglas-Fir and Western Hemlock tree species by creating bare earth
DEM and DSMs (digital surface models). The estimation of biomass is generally based on
regression equations relating vegetation biomass to LiDAR derived variables. Studies are
being conducted using LiDAR to determine the most appropriate laser-based predictors in
regression models for estimation of forest structural variables. For example, García et al.162

have explored several biomass estimation models based on LiDAR height or intensity, sepa-
rately, or height-intensity combined. They found height-related variables provided accurate
estimation of biomass; however, normalized intensity-related variables were found to be
more useful in explaining variance and also estimated biomass more accurately. The combined
use of height and intensity data has been shown to be a robust method to estimate biomass. For
broad-scale applications, space-borne LiDAR (ICESat GLAS) was found useful for biomass
estimation.98–100 The waveform extent of GLAS is the most important metric for biomass
estimation100 as it is directly related to vegetation height in flat terrain; however, for sloped
areas, waveform exacerbates estimation and needs terrain steepness index into a regression
model.100

In summary, remote sensing data (optical, SAR, LiDAR) have been found to be a major
source of data for forest biomass estimation and also in the selection of suitable variables impor-
tant for developing biomass estimation models. However, the performance of remote sensing
data and methods in biomass estimation have been found to be highly dependent on image
data type, forest cover type and state, geographical and environmental conditions and methods
used. Optical data are found suitable for extracting horizontal vegetation structures such as veg-
etation types and canopy cover and also in extracting variables for biomass estimation models.
They have been used for biomass estimation of almost all forest types, either alone or in combi-
nation with other remote sensing data with varying degrees of success. However, optical data
have an issue of clear weather condition at the time of data acquisition and also of saturation
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problems in forest sites with high biomass density. Spectral-based variables have been found to
be influenced by external factors such as soil moisture, vegetation phenology and growth vigor,
and also the 2-D nature of optical data limits its use in estimation of vertical vegetation structures
such as canopy height, a critical parameter for biomass estimation. Recently, data from ALOS/
PRISM and other stereo images have provided an opportunity to develop vegetation canopy
height and can improve biomass estimation performance. Radar data can overcome many of
the optical data problems for forest biomass estimation because of its ability to penetrate forest
canopy to a certain depth, its sensitivity to water content in vegetation and its weather independ-
ency. The regression of radar backscattering (amplitudes) and interferometry (amplitudes and
phases) are commonly used methods in biomass estimation. Radar data have been used exten-
sively in forest cover and type mapping, estimation of forest stand parameters and in estimating
biomass in tropical, temperate and boreal forests. However, radar data suffer from saturation
problems in complex mature forest stands and also have difficulty in distinguishing vegetation
types. L-band SAR images have been found suitable in discriminating forest biomass up to a
certain threshold of regenerating forests in tropical regions. PALSAR data have shown its ability
to estimate forest biomass in the Amazon and Siberia up to 50 t ha−1, which excludes most
temperate and tropical forests. The stereo viewing capability of InSAR data has been found
to improve biomass estimation in more complex forest stands and has been found useful in
reducing saturation problems by increasing the saturation range to a certain degree. The
high correlation between vegetation canopy height and biomass of InSAR makes it a promising
tool for broad-scale biomass estimation for tropical and subtropical regions of frequent cloud
cover. However, InSAR biomass estimation accuracy has been found to be sensitive to weather
conditions. Improved systems, such as Pol-InSAR, have been found useful in estimating forest
height and biomass estimation. LiDAR sensor can directly measure 3-D components of vegeta-
tion canopy structure and is widely used in estimation of forest biophysical parameters. Discrete
return small footprint laser data are used for biomass estimation for different forest environ-
ments: tropical forest biomass, temperate mixed deciduous forest biomass; and also in measure-
ments of biophysical parameters such as tree height and stand volume, tree and crown diameter,
and canopy structure. For regional to global scale applications, spaceborne LiDAR (ICESat
GLAS) has been found useful for biomass estimation.

4 Biomass Estimation in Grasslands and Rangelands

Grassland and rangeland ecosystems cover large areas of the earth’s surface and provide many
ecosystem services including carbon storage, biodiversity preservation and the production of
livestock forage.163 Being dominant over approximately 52.5 million square kilometers (near
40%) of the Earth’s land surface,164,165 grasslands and rangelands are important sources for
developing renewable energy. They can provide an alternative source for energy supply which
reduces the dependence on fossil fuels and minimizes greenhouse gas and other environmental
impacts.166 In addition to biofuel production, grassland ecosystems play an important role in
providing food, goods, and services for humans, and are central to livestock grazing.167,168

4.1 Use of Optical Remote Sensing

Optical remote sensing has been extensively used for estimating grassland and rangeland bio-
mass. Coarse-, medium-, and high-spatial resolution images have been used and examined in
order to better map the distribution of grassland and rangeland biomass. For example, Li et al.169

used multitemporal MODIS data to estimate the grassland aboveground biomass in the West
Songnen Plain, China. Their results indicated that multitemporal remotely sensed data along
with statistical models and artificial neural network (ANN) techniques have advantages for
estimating grassland aboveground biomass. Mundava et al.170 used Landsat ETMþ to test
the relationship between AGB in rangelands and remotely sensed indices by measuring dry and
green biomass fractions and found that single vegetation indices were moderately more accurate
for green biomass than dry biomass. For high-spatial resolution images, Dusseux et al.171 esti-
mated grassland biomass in agricultural areas by applying NDVI and two biophysical variables
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including LAI and fraction of vegetation cover on five SPOT images. Zandler et al.172 found that
both a high-spatial resolution sensor (RapidEye) with its additional red edge band and a coarse-
spatial resolution sensor (Landsat-8) showed very similar performances for modeling the total
dwarf shrub biomass in the desert landscape. The red edge reflectance curve performs better
than traditional vegetation indices for estimating the distribution of grassland over a desert
environment.173,174

Hyperspectral remote sensing data were also used to estimate grassland and rangeland bio-
mass. Among others, Rahman and Gamon175 examined the utility of hyperspectral remote sens-
ing to detect fresh and dry biomass, water content and plant area index of burned and unburned
grassland in Southern California. Xiaoping et al.176 concluded that grassland and rangeland bio-
mass could be estimated at the canopy level using hyperspectral reflectance. Clevers et al.177

found that one band in the NIR region from 859 to 1006 nm and one band in the red edge region
from 668 to 776 nm that were used in the weighted difference vegetation index had the best
predictive power of grassland biomass variation.

4.2 Use of Radar and LiDAR

Despite the popularity of radar and LiDAR data in forest biomass analyses, very few studies have
utilized such data in the estimation of grassland biomass. For instance, Dusseux et al.178 com-
pared the performance of variables extracted from four optical and five SAR satellite images to
monitor grassland biomass. They concluded that the classification accuracy of SAR variables
was higher than those using optical data. Buckley and Smith58 used radar, LiDAR, and hyper-
spectral data to monitor grassland biomass and they argued that radar and LiDAR data were not
affected by weather conditions as optical remote sensing data is.

Vegetation indices, including SAVI,179 the modified soil adjusted vegetation index
(MSAVI),180 NDVI,181,182 and normalized difference water index,183 have been widely used
in grassland and rangeland biomass estimation. Image classification, such as support vector
machine classifier,177,184 object-based classification,185 and ANN,182 were other techniques fre-
quently used for deriving grassland and rangeland biomass. In addition, multiple regression
analysis models were the most commonly used statistical approaches.186 However, the perfor-
mance of these techniques varied and depended on the structure of the study area and the nature
of the remotely sensed data used to estimate grassland and rangeland biomass.

5 Biomass Estimation in Tropical Savanna

Savanna ecosystems are generally comprised of herbaceous plants dominated by grasses, with
variable tree cover.187,188 These ecosystems cover approximately 18% of the Earth’s surface and
account for approximately 30% of the primary production of all terrestrial vegetation, thus form-
ing an integral part of global vegetation.189,190 The largest areas of savanna can be found in Africa
where it occupies approximately 50% of the territory.191 Considerable areas of savanna can also
be found in South and Central America, Australia, India, Southeast Asia, and the Pacific
Islands.192–197 Furthermore, savanna ecosystems are characterized by a pattern of strong season-
ality in available soil moisture, determined by a wet-dry climate.195,198 This seasonality in water
availability impacts plant productivity and consequently biomass production in savanna ecosys-
tems.195 Tropical savanna ecosystems can be highly productive with a global average NPP rang-
ing from 720 gCm−2 year-1143 to 782 gCm−2 year-1199. The arid and semiarid savannas of
Africa, Australia, and South America show lower NPP compared to the margins of the Amazon
and Congo River basin.199 Fire is also a dominant feature and a major determinant of the ecology
and distribution of savannas worldwide.190,200,201 Thus, fires have an impact on the proportions of
dead and live biomass in savannas.202

The rate of biomass production is an important attribute of most ecosystems. In the savanna
ecosystem, as in all ecosystems, the rate of biomass production determines the amount of energy
available for higher trophic levels.203 Thus, biomass estimation will provide crucial information
on the health of the ecosystem and the biodiversity it supports. Additionally, there is a growing
recognition of the value of natural carbon stores in savanna biomass and the significance of
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savannas in the global carbon cycle.190 These ecosystems also face increasing pressure from
human interventions in the form of agricultural expansion,187,204 logging and burning.187,205

Given the important role of savanna ecosystems in the global carbon cycle and the threats
they face, it is vital to undertake a detailed census of biomass in these ecosystems.
Techniques that will reliably measure, map and monitor biomass in savanna ecosystems are
required that will support conservation and management actions, as well as determine optimum
use for renewable energy. Field measurements to estimate biomass are labor intensive and time-
consuming. Remote sensing and LiDAR sensors provide many opportunities in this respect.206

Remote sensing and LiDAR systems have quite commonly been used in biomass assessment
of closed forests; however, their use in savannas has become more popular only in recent times.
The main reasons for this are that the distribution of vegetation biomass in savannas is uneven in
3-D space with biomass allocated to above and below ground components.48 Furthermore, the
structure of savanna vegetation is variable with the occurrence of an herbaceous layer with var-
iable tree cover and open spaces.188 These two factors make the retrieval of savanna vegetation
characteristics from remote sensing data difficult.

5.1 Use of Optical Remote Sensing

Vegetation indices have been used extensively by researchers in the context of savanna ecosys-
tems.207–211 For example, Sannier et al.212 found high correlations of biomass with NDVI from
NOAA–AVHRR images for both herbaceous and woody vegetation in the savanna region of
Etosha National Park in Namibia. Other studies have also shown the sensitivity of NDVI to
the herbaceous biomass of savannas in the Sahel zone of Senegal using NOAA–AVHRR
imagery.16,213 On the other hand, Mutanga and Skidmore106 found that the NDVI performed
poorly in estimating pasture biomass of Cenchrus ciliaris grass in the low-lying savannas of
Kruger National Park in South Africa. They suggest that some indices, such as the NDVI,
had limited value in biomass estimation since they saturate in dense vegetation, a finding
that agrees with Gill et al.,214 who found that the NDVI had limited application in monitoring
changes in vegetation in Australia due to saturation. Indices such as simple ratio or RVI and the
red edge position may perform better, particularly when estimating pasture biomass with high
canopy density.106 Verbesselt et al.215 used RVI from SPOT vegetation time series to monitor the
vegetation biomass in the savanna ecosystem of Kruger National Park in South Africa. On the
other hand, van Leeuwen et al.216 argued that soil background influences altered the responses of
most vegetation indices and thus utilized SAVI in their estimation of herbaceous biomass using
reflectance data in a shrub savanna landscape in Niger.

Monteith’s efficiency model using indirect estimates of APAR obtained from remotely
sensed data has been applied in the African Sahel to assess the productivity of savanna ecosys-
tems.217,218 The findings support the idea that savannas play an important role in global carbon
cycle, particularly given the large areas that they cover. Other global savanna biomass assess-
ments have been made possible through NASA’s Terra satellite platform with MODIS on board.
Fensholt et al.37 have utilized LAI, FAPAR, and NPP produced byMODIS in estimating biomass
production in the savannas of the semiarid Sahel zone in Senegal. An assessment of the MODIS
LAI product for Australian ecosystems revealed that the savanna and shrub-land group LAIs
show strong seasonal patterns, mainly associated with summer rainfall seasons.219

Process-based models are becoming increasingly popular in studies involving productivity
assessments of terrestrial ecosystems.220–225 These studies combined satellite “greenness” data
from the AVHRR sensor into the NASA–Carnegie Ames Stanford Approach (CASA) model to
estimate spatial variability in global biomass accumulation in terrestrial ecosystems. Potter
et al.220 applied a similar methodology but used MODIS EVI data, which represent the optimized
vegetation index from the MODIS satellite, to estimate aboveground biomass (AGB) in savanna
ecosystems worldwide and found it to be second only to tropical evergreen forests. However, the
MODIS data also showed that the productivity of savanna ecosystems worldwide is highly de-
pendent on seasonal climate anomalies such as El Niño Southern Oscillation.225 For example,
research conducted on the Brazilian Amazon Cerrado (savanna) established that the productivity
of the Cerrado was highly impacted by variability in precipitation rates caused by the 2002–2003
El Niño phase.220,226 The general pattern observed was an increase in seasonal FPAR cover in
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savannas during increased precipitation and decrease in FPAR cover during reduced precipita-
tion (FPAR is an indicator of biomass production). This pattern suggests that the productivity of
savanna ecosystems is very dependent on future rainfall patterns, particularly in parts of the
world that are likely to be affected by climate change.199

5.2 Use of Radar and LiDAR

McGlinchy et al.65 have used LiDAR for biomass estimation in savanna ecosystems with some
success in a South African savanna landscape. Others have utilized new approaches involving
the fusion of high-fidelity VIS/NIR imaging spectrometer data with scanning, waveform light
detection and ranging (wLiDAR) data to assess biomass in African savannas.206,227,228 The find-
ings established the potential of fused hyperspectral and wLiDAR data for herbaceous biomass
modeling in savannas.

Collins et al.59 examined the relationship between the backscatter intensity of polarimetric
SAR data and the aboveground biomass of a north Australian savanna to estimate above and
below ground biomass and carbon storage of this ecosystem. They found no significant differ-
ence between their predicted and observed aboveground biomass, thus demonstrating the poten-
tial of SAR for predicting and mapping aboveground biomass in the tropical savannahs of
northern Australia. However, the open canopy of savannas and the spatial resolution of the sen-
sor lead to complications for the use of SAR data in savannas.48 For example, Viergever et al.229

evaluated SAR data for aboveground biomass estimation in tropical savanna woodland in Belize,
Central America. Their findings showed a relatively low correlation between SAR backscatter
and aboveground biomass, although retrieved canopy heights gave a better representation of
the aboveground biomass. Nevertheless, it could not be used to estimate biomass directly
due to the heterogeneity of the canopy.

Savannas are extremely productive systems and they have a lot of potential for renewable
energy through biomass, making it very important to develop accurate and precise methods for
estimating biomass. These ecosystems also face many threats, both human and climate change
induced. Remote sensing can provide cost-effective and timely biomass estimates over large
areas as opposed to direct field measurements of biomass which are labor intensive, costly
and sometimes destructive.

6 Image Processing for Biomass Estimation

6.1 Spatial Data Processing

Although a range of remote sensing data (optical, radar, LiDAR) at different spectral, spatial, and
temporal resolutions have been used for biomass estimation with varying degrees of success, it
has been found that improvement in biomass estimation depends not only on the data type but
also on efficient image processing techniques.230 There are a number of environmental and topo-
graphic factors that can affect the accuracy of biomass estimation from remote sensing data. A
thorough understanding of previous efforts in biomass estimation can be used in designing an
optimal image analysis procedure suitable for the specific study area. Radiometric and atmos-
pheric corrections are important in improving image quality, and a range of methods have been
developed for these corrections under different conditions.231 Topographic factors (slope, aspect)
that affect vegetation reflectance and biomass are also important for mountainous regions. More
details on these corrections can be found in Hale and Rock.232 The problem associated with
remote sensing data for biomass estimation is that the images become saturated at fairly low
biomass levels. Use of narrow-wavelength images can reduce this data saturation problem.106

The large number of spectral bands in the hyperspectral image may improve the biomass esti-
mation performance. However, because of data volume and processing time, there is often
a trade-off between spatial, spectral, and radiometric resolutions.

Image classification is the simplest way of extracting information from remote sensing data,
and a range of classification algorithms are available for different data types and conditions.
The conventional pixel-based classification method, relying only on spectral information,
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works well with medium- to coarse-resolution images but is often found insufficient when
applied to very high-resolution imagery233 and LiDAR. Object-based classification methods
based on both spectral and contextual information have been shown to improve performances
for many applications, including biomass estimation.234 However, the implementation of con-
textual information in classification is a complex process.136 Use of advanced classifiers, such as
SMA, can also improve classification results.113

6.2 Image Fusion

Most previous studies involving biomass estimation from remote sensing data have used a single
sensor or single date image, which may not be sufficient for complex applications such as bio-
mass estimation in certain areas.31,101 Since remote sensing data are available from a range of
sensors, each with its own characteristics and time series, it would be more useful if they were
combined or fused to produce a better understanding of the observed site.102 For example, the
fusion of optical and radar data may reduce mixed pixels and data saturation problems and has
the potential to improve biomass estimation. Multisensor or multiresolution data fusion takes
advantage of the strengths of distinct image data for improvement of visual interpretation and
quantitative analysis3 and numerous methods have been developed to integrate spectral and spa-
tial information from different sensors.103,104,235,236 Studies in the past have shown that the fusion
of optical (multi and PAN) and also SAR data resulted in an improved performance for biomass
estimation.237–241 However, more research is needed to explore the improvement of biomass
estimation through multisensor data fusion. Several studies have also tried to combine high-
resolution multispectral imagery and LiDAR data to produce more effective forest classifica-
tion.242–245 Tonolli et al.246 studied the prediction of forest stem volume using LiDAR and
IRS 1C, LISS III data. Popescu et al.125 explored the feasibility of small footprint LiDAR and
multispectral imagery to estimate volume and biomass in deciduous and pine stands in Virginia,
USA. The results showed that, though LiDAR accurately estimated the biophysical parameters
of forest stand at the individual tree level alone, it was more effective when used in conjunction
with optical data. Vaglio-Laurin et al.247 estimated aboveground biomass in an African tropical
forest with LiDAR and hyperspectral data. Their findings showed that the integration of hyper-
spectral bands with LiDAR improved the model based on LiDAR or hyperspectral bands alone.

7 Remote Sensing Techniques and Accuracies Among Forest,
Grassland/Rangeland, and Tropical Savanna Ecosystems

The environmental structure for forests, grasslands/rangelands, and tropical savanna biomes is
different based on the nature, distribution, characteristic, density, and energy produced from each
ecosystem. These elements interact with incoming radiation to impact remote sensing data and
affect the information provided. In the past, a wide range of remote sensing techniques has been
used to extract information related to biomass estimation from forests, grasslands/rangelands and
savanna ecosystems. Most of the techniques used were vegetation indices, image transform algo-
rithms [e.g., principal component analysis (PCA), minimum noise fraction transform (MNF),
and tasselled cap transform (TCT)], texture images, radar, and LiDAR. However, these tech-
niques have shown different accuracies in various ecosystems.

Based on vegetation extraction using remote sensing data, the most frequently used tech-
niques for forest, grassland/rangeland and savanna ecosystems are vegetation indices. The
common vegetation indices have included NDVI, EVI, SAVI, and NDBI and have been
used to estimate biophysical variables including LAI, FAPAR and biomass. In biomass estima-
tion, however, vegetation indices can be a more suitable technique for grassland, savanna and
forest sites with a simple stand structure rather than those of a complex stand structure since the
relationships of NIR wavelength with biomass are weak.20,115 Lu et al.115 found that the relation-
ships of shortwave-infrared wavelength with biomass are stronger than the NIR wavelength in
a complex stand structure. Roy and Ravan122 emphasized the strength of shortwave infrared in
the relationships between spectral response and biomass, but these relationships have a seasonal
dependency in varying phonological conditions. This is because the shortwave-infrared bands
are less affected by atmospheric changes. For grasslands/rangelands and savanna biomass
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estimation, the performance of vegetation indices has shown differing accuracies. For example,
Ullah et al.248 concluded that band depth analysis consistently showed a higher accuracy than
vegetation indices using MERIS data in grassland ecosystems, while Paruelo et al.249 found a
positive relationship between NDVI and aboveground net primary production (ANPP) with
mean annual precipitation between 280 and 1150 mm, and mean annual temperature between
4 deg and 20 deg using AVHRR/NOAA. However, Mutanga and Skidmore106 emphasized that
NDVI provides a poor performance in estimating pasture biomass. Thus, the accuracy obtained
by applying vegetation indices in grasslands/rangelands and savanna ecosystems depends on a
number of variables including type of data used, study area characteristics and environmental
and atmospheric conditions. Additionally, the problem of saturation under high vegetation den-
sity limits the performance of vegetation indices.

Classification and linear or nonlinear regression have also shown different results and accu-
racies among different ecosystems. While, for example, k-nearest neighbor analysis provided a
consistent accuracy when applied for forest biomass estimation,250,251 it may not be a reliable
technique for grassland/rangeland and savanna biomass estimation. The k-nearest neighbor
analysis failed in some cases250 to provide a higher accuracy when applied to large area veg-
etation detection. Applying hyperspectral remote sensing may overcome some of the problems,
however, hyperspectral data are mainly airborne and are captured over small areas.20 ANN has
been applied to estimate biomass from both forest and grassland ecosystems. For example, Xie
et al.182 compared ANN and multiple linear regression to estimate grassland aboveground dry
biomass in Mongolia and Wang and Xing252 applied ANN to estimate natural forest biomass in
Jilin Province, China. Both studies provided improved accuracies using ANN for both grassland
and forest biomass estimation. Other techniques, such as image transformation (PCA, MNF, and
TCT), texture analysis, and SMA, have shown differences between the obtained results of
biomass estimations of forest, grassland/rangeland and savanna ecosystems. However, most pre-
vious studies have applied these techniques only for forest biomass estimation rather than for
other environments.

Although LiDAR has improved the accuracy of biomass estimation in forest biomes,67–255 the
availability of LiDAR data, particularly for large areas, has limited the usefulness of this tech-
nology. Similarly, while radar data have been widely applied in forest biomass estimation (as
discussed in Sec 3.2), very few studies have used radar data for biomass estimation in grasslands/
rangelands and savanna ecosystems.

8 Conclusions

To efficiently and effectively use biomass as a renewable energy source, it is important to have a
detailed knowledge of its distribution, abundance, and quality. Remote sensing offers the tech-
nology to enable rapid assessment of biomass over large areas relatively quickly and at a low
cost. It is a technology that can be used to ensure that biomass as a renewable energy source is
used in a sustainable manner. Remote sensing techniques have many potential benefits in bio-
mass estimation over traditional field measurement methods at different scales ranging from
local to regional, including cost, labor, and time. However, the selection of suitable remote sens-
ing data based on information on the scale of the study area, the data analysis procedure and costs
is an important factor to be considered for the most appropriate aboveground biomass estimation
procedure. High-spatial resolution data from both airborne and satellite platforms can provide
accurate biomass estimates at local scales; however, for regional scales, a large volume of data is
required, which is not only expensive but also difficult to process; this limits its application for
larger areas. Landsat TM (medium-spatial resolution) data have been found more effective for
biomass estimation at a regional scale; however, mixed pixels and data saturation problems have
been reported with these data in biomass estimation for complex environments. At the national
and global scales, coarse-spatial resolution data, such as AVHRR or MODIS, have been found
useful in biomass estimation; however, the data have not been used much because of the diffi-
culty in linking coarse-spatial resolution data and field measurements. Most of the previous
studies based on radar systems in biomass estimation used single polarization, single incident
angle, and low resolution SAR sensor, and hence have attained limited success. However, data
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from PALSAR and RADARSAT-2 with different polarizations, resolutions, and incident angles
can offer greater opportunity to re-examine the potential of SAR data in biomass estimation.
With the advent of LiDAR systems, the analysis can be extended to the third dimension in quan-
tifying some vegetation characteristics directly, such as tree height, canopy height, and volume
and can assist in improved biomass estimation. Overall remote sensing data, ranging from optical
to microwave and also to LiDAR, have shown great potential in biomass estimation at all scales.

Biomass estimation from remote sensing data is a complex analysis process which involves
many factors such as mixed pixels, data saturation, and complex biophysical environments.
The selection of suitable algorithms for information extraction is also difficult and needs higher
analytical skills. The most commonly used methods for biomass estimation are linear or nonlinear
regression models, neural network, and k-nearest neighbor, and also biomass is estimated indirectly
from remotely sensed canopy parameters. Use of contextual information along with the spectral
information has proven useful in improving biomass estimation. Advanced classifiers, such as
SMA, can also improve classification results. The fusion of multisensor and multiresolution
data may reduce mixed pixels and data saturation problems and has the potential to improve bio-
mass estimation.

Anthropogenic actions have diminished the size of this pool of renewable energy over the
years. Additionally, issues of biodiversity conservation and soil and water protection will restrict
the amount of biomass that can ultimately be retrieved from forests and other land cover types.256

Also, in order to be truly renewable, the removal of forest biomass must be undertaken sustain-
ably so that impacts on local ecosystems and their biodiversity are limited.14 Remote sensing can
play an effective role in determining the areas from which plant biomass can be sustainably
harvested and used in energy generation.
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